berlin.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
Alles rund um, über, aus & für Berlin

Administered by:

Server stats:

685
active users

#synapses

0 posts0 participants0 posts today
PLOS Biology<p>How do diverse synapses in the brain organize their nanoarchitecture? This study uses <a href="https://fediscience.org/tags/nanobodies" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>nanobodies</span></a> &amp; STED imaging to study the nanoarchitecture of thalamocortical &amp; corticocortical <a href="https://fediscience.org/tags/synapses" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>synapses</span></a>, revealing distinct principles of synaptic nano-organization in the brain <span class="h-card" translate="no"><a href="https://fediscience.org/@PLOSBiology" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>PLOSBiology</span></a></span> <a href="https://plos.io/3FY4vcd" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">plos.io/3FY4vcd</span><span class="invisible"></span></a></p>
Albert Cardona<p>Role of axo-axonic synapses among olfactory receptor neurons (ORNs) in odor decorrelation, mediated by metabotropic acetylcholine receptors:</p><p>"Nonlinear high-activity neuronal excitation enhances odor discrimination", Julia E. Manoim-Wolkovitz et al. 2025<br><a href="https://www.cell.com/current-biology/fulltext/S0960-9822(25)00198-8" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">cell.com/current-biology/fullt</span><span class="invisible">ext/S0960-9822(25)00198-8</span></a></p><p><a href="https://mathstodon.xyz/tags/neuroscience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>neuroscience</span></a> <a href="https://mathstodon.xyz/tags/Drosophila" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Drosophila</span></a> <a href="https://mathstodon.xyz/tags/AxoAxonicSynapses" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AxoAxonicSynapses</span></a> <a href="https://mathstodon.xyz/tags/synapses" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>synapses</span></a> <a href="https://mathstodon.xyz/tags/olfaction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>olfaction</span></a></p>
CellBioNews<p><a href="https://scientificnetwork.de/tags/Cellular" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Cellular</span></a> structure without a <a href="https://scientificnetwork.de/tags/membrane" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>membrane</span></a>: Researcher discusses how <a href="https://scientificnetwork.de/tags/synapses" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>synapses</span></a> use <a href="https://scientificnetwork.de/tags/liquids" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>liquids</span></a> to create functional separations.</p><p><a href="https://scientificnetwork.de/tags/LLPS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LLPS</span></a> <a href="https://scientificnetwork.de/tags/membrane" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>membrane</span></a>-less_organelles <a href="https://scientificnetwork.de/tags/neurotransmission" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>neurotransmission</span></a></p><p> <a href="https://phys.org/news/2025-03-cellular-membrane-discusses-synapses-liquids.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">phys.org/news/2025-03-cellular</span><span class="invisible">-membrane-discusses-synapses-liquids.html</span></a></p>
Albert Cardona<p>"The first synapse was visualized using electron microscopy in the mid–1950s, although parallel work and delicate egos make it difficult to determine with certainty the first researcher to actually see one." – Alexandra Balwit <a href="https://www.asimov.press/p/barcoding-brains" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">asimov.press/p/barcoding-brain</span><span class="invisible">s</span></a></p><p>Neuroscientists are human after all.</p><p><a href="https://mathstodon.xyz/tags/neuroscience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>neuroscience</span></a> <a href="https://mathstodon.xyz/tags/synapses" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>synapses</span></a> <a href="https://mathstodon.xyz/tags/ElectronMicroscopy" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ElectronMicroscopy</span></a></p>
Albert Cardona<p>Synapses in the fly brain learning and memory centre, the mushroom body:</p><p>"Quantitative characterization of the pattern of Brp clusters across multiple individuals revealed cell-type-dependent synapse heterogeneity and stereotypy. Furthermore, we discovered previously unidentified sub-compartmental synapse configuration and its regulation by cAMP signaling."</p><p>From:<br>"High-throughput synapse profiling reveals cell-type-specific spatial configurations in the fly brain", by Wu et al. (Tanimoto lab) 2025<br><a href="https://www.biorxiv.org/content/10.1101/2024.12.02.626511v4" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">biorxiv.org/content/10.1101/20</span><span class="invisible">24.12.02.626511v4</span></a></p><p><a href="https://mathstodon.xyz/tags/neuroscience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>neuroscience</span></a> <a href="https://mathstodon.xyz/tags/Drosophila" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Drosophila</span></a> <a href="https://mathstodon.xyz/tags/MushroomBody" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MushroomBody</span></a> <a href="https://mathstodon.xyz/tags/synapses" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>synapses</span></a></p>
Charité Berlin<p>❓ Why do we learn in our <a href="https://wisskomm.social/tags/sleep" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sleep</span></a>?</p><p>❗ A team from <a href="https://wisskomm.social/tags/Charit%C3%A9Berlin" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CharitéBerlin</span></a> finally has a possible explanation: The slow brain waves typical of deep sleep strengthen the connections between human nerve cells, making the <a href="https://wisskomm.social/tags/brain" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>brain</span></a> especially receptive to information. The details:</p><p>👉 <a href="https://www.charite.de/en/service/press_reports/artikel/detail/why_deep_sleep_is_helpful_for_memory/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">charite.de/en/service/press_re</span><span class="invisible">ports/artikel/detail/why_deep_sleep_is_helpful_for_memory/</span></a></p><p><a href="https://wisskomm.social/tags/medicine" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>medicine</span></a> <a href="https://wisskomm.social/tags/research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>research</span></a> <a href="https://wisskomm.social/tags/science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>science</span></a> <a href="https://wisskomm.social/tags/ScienceMastodon" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ScienceMastodon</span></a> <a href="https://wisskomm.social/tags/MedMastodon" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MedMastodon</span></a> <a href="https://wisskomm.social/tags/Charit%C3%A9Neuro" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CharitéNeuro</span></a> <a href="https://wisskomm.social/tags/Charit%C3%A9Paper" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CharitéPaper</span></a> <a href="https://wisskomm.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>neuroscience</span></a> <a href="https://wisskomm.social/tags/synapses" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>synapses</span></a> <a href="https://wisskomm.social/tags/SlowWaves" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SlowWaves</span></a></p>
PLOS Biology<p>Does neuronal information storage involve nanoscopic structural changes at <a href="https://fediscience.org/tags/synapses" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>synapses</span></a>? @olenas_kim &amp;co use nanophysiology &amp; functional EM to reveal structural changes of <a href="https://fediscience.org/tags/hippocampal" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>hippocampal</span></a> <a href="https://fediscience.org/tags/ActiveZones" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ActiveZones</span></a> during chemical potentiation @ISTAustria <a href="https://fediscience.org/tags/PLOSBiology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PLOSBiology</span></a> <a href="https://plos.io/3V22v7h" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">plos.io/3V22v7h</span><span class="invisible"></span></a></p>
PLOS Biology<p>Protein translocation at active <a href="https://fediscience.org/tags/synapses" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>synapses</span></a>. @jaimedejuan &amp; @carlitosroca7 present a method for quantifying translocation of endogenous neuronal proteins to the synaptic surface, visualizing translocation of proteins when <a href="https://fediscience.org/tags/neurons" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>neurons</span></a> are firing <a href="https://fediscience.org/tags/PLOSBiology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PLOSBiology</span></a> <a href="https://plos.io/3UsNtqK" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">plos.io/3UsNtqK</span><span class="invisible"></span></a></p>
Andrew Plested<p>Pictures of AMPA receptors at synapses from Axel Brunger's lab. By averaging a lot of tomogram images, they could discern scaffolding molecules bound to the complexes.</p><p>These in situ images are lower resolution than purified protein, but retain the native organization and place the receptors somewhat at the side of vesicular docking sites. </p><p><a href="https://www.biorxiv.org/content/10.1101/2024.10.19.619226v2" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">biorxiv.org/content/10.1101/20</span><span class="invisible">24.10.19.619226v2</span></a></p><p><a href="https://mstdn.science/tags/synapses" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>synapses</span></a> <a href="https://mstdn.science/tags/neuroscience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>neuroscience</span></a> <a href="https://mstdn.science/tags/CellularStructuralBiology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CellularStructuralBiology</span></a> <a href="https://mstdn.science/tags/Receptors" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Receptors</span></a></p>
Albert Cardona<p>Turns out the postsynaptic densities (PSD) that we use in electron microscopy to identify synapses aren’t made of large protein aggregates but rather of specialised cellular organelles:</p><p>“we combined mouse genetics and cryo-electron tomography to determine the 3D molecular architecture of fresh isolated and anatomically intact synapses in the adult forebrain. The native glutamatergic synapse did not consistently show a high density of proteins at the postsynaptic membrane thought to be characteristic of the PSD. Instead, a ‘synaptoplasm’ consisting of cytoskeletal elements, macromolecular complexes and membrane-bound organelles extended throughout the pre- and post-synaptic compartments.”</p><p>Excellent work by Julia Peukes et al. 2024 <a href="https://elifesciences.org/reviewed-preprints/100335" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">elifesciences.org/reviewed-pre</span><span class="invisible">prints/100335</span></a></p><p><a href="https://mathstodon.xyz/tags/neuroscience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>neuroscience</span></a> <a href="https://mathstodon.xyz/tags/synapses" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>synapses</span></a> <a href="https://mathstodon.xyz/tags/CryoEM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CryoEM</span></a> <a href="https://mathstodon.xyz/tags/CryoCLEM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CryoCLEM</span></a></p>
PLOS Biology<p>Sleep normalizes <a href="https://fediscience.org/tags/synapses" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>synapses</span></a> in the cortex &amp; hippocampus that have been potentiated during the daytime. This study shows that slow-wave <a href="https://fediscience.org/tags/sleep" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sleep</span></a> also down-regulates <a href="https://fediscience.org/tags/AMPAreceptor" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AMPAreceptor</span></a> levels in the <a href="https://fediscience.org/tags/hypothalamus" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>hypothalamus</span></a>, a brain region that regulates sleep <a href="https://fediscience.org/tags/PLOSBiology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PLOSBiology</span></a> <a href="https://plos.io/3MdTALe" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">plos.io/3MdTALe</span><span class="invisible"></span></a></p>
Albert Cardona<p>"Homeostatic synaptic normalization optimizes learning in network models of neural population codes", Mayzel and Schneidman, 2024.<br><a href="https://elifesciences.org/reviewed-preprints/96566" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">elifesciences.org/reviewed-pre</span><span class="invisible">prints/96566</span></a></p><p>From the assessment:</p><p>"... an important contribution to the development of a biologically plausible theory of statistical modeling of spiking activity. The authors convincingly implemented the statistical inference of input likelihood in a simple neural circuit, demonstrating the relationship between synaptic homeostasis, neural representations, and computational accuracy."</p><p><a href="https://mathstodon.xyz/tags/neuroscience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>neuroscience</span></a> <a href="https://mathstodon.xyz/tags/CompNeurosci" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CompNeurosci</span></a> <a href="https://mathstodon.xyz/tags/synapses" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>synapses</span></a></p>
PLOS Biology<p>Hidden <a href="https://fediscience.org/tags/HearingLoss" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HearingLoss</span></a> involves loss of <a href="https://fediscience.org/tags/cochlear" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cochlear</span></a> <a href="https://fediscience.org/tags/InnerHairCell" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>InnerHairCell</span></a> synapses. @CorfasGabriel &amp;co show that this degrades temporal auditory processing; generating extra <a href="https://fediscience.org/tags/synapses" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>synapses</span></a> results in above-normal processing in mice, with therapeutic potential <a href="https://fediscience.org/tags/PLOSBiology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PLOSBiology</span></a> <a href="https://plos.io/4eFtLRf" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">plos.io/4eFtLRf</span><span class="invisible"></span></a></p>
Claude Trudel<p>Dans un minuscule échantillon d’un cerveau humain: quelque 57 000 cellules, 150 millions de synapses<br><a href="https://www.sciencenews.org/article/biological-puzzles-human-brain-visual" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">sciencenews.org/article/biolog</span><span class="invisible">ical-puzzles-human-brain-visual</span></a><br><a href="https://jasette.facil.services/tags/biologie" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>biologie</span></a> <a href="https://jasette.facil.services/tags/cerveau" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cerveau</span></a> <a href="https://jasette.facil.services/tags/cellules" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cellules</span></a> <a href="https://jasette.facil.services/tags/synapses" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>synapses</span></a> <a href="https://jasette.facil.services/tags/science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>science</span></a></p>